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J. Phys. A: Math. Gen. 23 (1990) L1193-LI197. Printed in the U K  

LE’ITER TO THE EDITOR 

Characters of Hecke algebras Hn(4) of type An-l 

R C King and B G Wybourne 
Faculty of Mathematical Studies, University of Southampton, Southampton SO9 5NH, UK 

Received 17 August 1990 

Abstract. The connection between the Ocneanu trace on H , ( q )  and Schur functions leads 
to a simple method for calculating the irreducible characters of the Hecke algebras H,(q). 
The characters appear as the elements of the transition matrix relating certain generalized 
power sum symmetric functions to Schur functions. 

The Hecke algebra representations of braid groups and link polynomials has been 
reviewed by Jones (1987). The traces of the Hecke algebras H , ( q )  of type A,,-] play 
a key role in applications. The traces may be calculated from the irreducible representa- 
tions of H , ( q )  as constructed by a number of workers (Dipper and James 1987 and 
Wenzl 1989). It would be desirable to be able to determine the traces directly, in much 
the same way as occurs for the symmetric group S,, (Littlewood 1940), without first 
constructing explicit representations. We present such a method in this letter. 

The complex Hecke algebra H, , (q ) ,  with q an arbitrary but fixed complex parameter, 
is generated by g, with i = 1,2, . . . , n - 1 subject to the relations: 

gf = ( 4 -  l )g ,+q  (1) 
for i =  1,2,. . . , n - 2  (2) 

gig] = g,g, for l i - j l a 2 .  (3) 

for i =  1,2, .  . . , n - 1  

g,gl+lgl = gr+lglg,+l 

For q = 1 these relations are exactly those appropriate to the symmetric group S,  with 
g, replaced by s, for i = 1,2, . . . , n - 1, where s, is the transposition ( i ,  i + 1). Every 
permutation T in S, can be expressed as a reduced word of minimal length I ( T )  in 
the generators s,. There exists a map h from S,, to H,, (q)  such that h(s , )=g,  and 
h ( ~ )  = g,,g,, . . . g,_ for any permutation T = s I , s l 2 . .  . sI,- E S,,. The set of reduced words 
h( P) for all n ! permutations T E S,, forms a basis of H,, (q) .  

Ocneanu (Ocneanu 1985t, Freyd et a1 1985) has defined a linear trace on H,(q ) ,  
the inductive limit of H,, (q)  as n + CO, such that for each z E C 

tr(xy) = tr(yx) (4) 
tr( 1) = 1 ( 5 )  
tr(xg,) = z tr(x) for X E  H , , - ] ( q ) .  ( 6 )  

The defining relations (1)-(3) augmented by (4) may be used to express the trace of 
a given element x of H,(q )  as a linear sum of traces of certain minimal words which 
are both reduced and contain no generator g, more than once. It follows from ( 5 )  and 
(6 )  that the trace of each minimal word, U, is given by 

tr( v )  = z’(”) .  (7) 
t A cryptic summary appears in Freyd er a1 (1985) with some details being given in Jones (1987) and 
Wenzl (1989). 
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Each minimal word v consists of a unique sequence of subwords c l ,  U,, . . . which 
we call connected words, where a word is said to be connected if it is a sequence of 
consecutive generators g i g i + l g i + 2 . .  . . There are 2"-' distinct minimal words in H,(q)  
but they can conveniently be assigned to classes labelled by distinct partitions p of n 
in accordance with their connectivity. A minimal word U of H,(q)  is said to have 
connectivity p = ( p l ,  p 2 , .  . .) if it takes the form: 

v = (gi ,gi ,+I * gil+rl-2)(gi2gi2+1 * * gi2+r2-2) - * * (gikgik+1 * * .  gik+rk-2) (8) 
with 

i l  + rl  - 1 < i, i2 + r, - 1 < i3 . . . ikVl  + rk- ,  - 1 < ik 

where ( rI  , r 2 ,  . . . , r k )  is a permutation of those parts of p > 1 .  
Specifying the connectivity classes of minimal words of H,( q )  by partitions of n 

is in accord with the practice of using such partitions to specify conjugacy classes of 
the elements of S,  as dictated by their cycle structure. Indeed the minimal word 
U = h ( r )  in H,(q)  belongs to the connectivity class labelled by p if and only if its 
pre-image r in S, belongs to the conjugacy class labelled by p. 

The characters of the symmetric group S,  are the elements of a transition matrix 
that relates the power sum symmetric functions p p ( r )  to the Schur functions ~ " ( t )  for 
an arbitrary set of indeterminates t = ( t l  , t , ,  . . .) (Macdonald 1979). We may generalize 
the power sum functions by letting 

r-1 

a + b + l = i  

and for p = ( p l ,  p2 ,  . . .) letting 

p p ( q ;  t )  = p p , ( q ;  t )pp2(4 ;  t )  * f * * 

This then enables us to state the following key theorem: 
(10) 

Theorem 1 .  Let v be any minimal word of H,(q)  having connectivity p. Then the 
character of U in the irreducible representation r,, is given by 

where x; (4) is defined by the generating function 
tr rAhU)=xk(q) ( 1 1 )  

p p ( q ;  r,  Xk(q)sA(t). (12) 

The proof of theorem 1 depends upon the validity of a remarkable formula (Jones 
1987, Reshetikhin 1988) relating the Ocneanu trace on the Hecke algebra H,(q)  to the 
characters of irreducible representations. Provided that q is not a root of unity: 

t r (x )=C w A ( q ,  z ,  tr 
A 

for all x E H , ( q ) ,  where the summation is over all partitions A of n and 

where w = 1 - q + z. F" is the Young diagram specified by A and h,  is the hook-length 
of the box in the ith row and j th  column of F A .  

In fact wA(q, z )  is nothing other than the particular specialization of the Schur 
function sA(t)  given by (Littlewood 1940 p 125): 

wA ( 4 ,  z ,  = ( wq/ zq) ( 1 5 )  
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where q = (1, q, q2,  . . .) and pq = (p, pq, p q 2 ,  . . .) for an p. The symbol / in the argument 
of the Schur function indicates the separation of the indeterminates into two sets 
appropriate to what are known as supersymmetric Schur functions (King 1983). 

In the case of a minimal word v we obtain 
z'(")=C sA(wq/zq) tr ~ ~ ( 2 1 ) .  

A 

Comparison between (16) and (12) allows us to prove theorem 1 from: 

Lemma 1. In the case t=(wq/zq) with w = l - q + z  

pr(q; t ) = ~ r ( q ;  Wq/zq)=zr-'* 

This lemma may itself be proved using the properties of ordinary and supersym- 
metric Schur functions and the further lemma: 

Lemma 2. In the case t = (q / l )  
(q- l )q"(- l )b  if A = ( a + l ,  lb) 

otherwise. = sA(q/l) = { 0 
It is now a simple task to evaluate the characters ,y:(q) by using (9), (10) and (12). 

The procedure involves the repeated use of the Littlewood-Richardson rule (Littlewood 
1940 p 94, Macdonald 1979 p 62) for decomposing products of Schur functions: 

s w ( t ) s Y ( f )  =C c ; \ , A ( ~ ) .  (19) 

As an example of such calculations, consider the case of (12) for which p = (432). 
It follows from (9) and (10) that 

p(432)(q) = = ( ~ 2 s 3 1 + q ~ Z 1 2 - ~ 1 4 ) ( q 2 s 3 - q s Z l + s 1 3 ) ( ~ s 2 - s 1 2 ) ~  (20) 
Using the Littlewood-Richardson rule to multiply out the Schur-function products 

we obtain 
s9q6+ sg1(2q6- 3q5) + s7z(3q6- 5q5+ 3q4) + s712(q6-6q5+ 5q4) 

+ S63(3q6-6q5+4q4- q3)  + s621(2q6- 1oq5+ 13q4-6q3) 

+ S613( -3q5 + 1oq4 - 6q3) + S54(2q6-4q5 + 3q4- q3)  

+ s53~(2q6- 10q5+ 14q4- 8q3 + 2qz) + s522(q6-4q5+9q4-9q3+ 3q2) 

+ s5212(-5q5+ 17q4- 18q3+7qz)+ s514(5q4- 12q3+ 5q2)  

+ ~ ~ 2 ~ ( q ~ - 4 q ~ + 6 q ~ - 4 q ~ +  q2)+sqg2(q6-4q5+9q4-9q3+5qZ-q) 

+ ~ 4 3 ~ 2 (  -4q5 + 13q4 - 16q3 + 8qz -2q) 

+ ~ ~ ~ 2 ~ ( - 2 q ' +  8q4- 16q3+ 13qz-4q)+ s4213(7q4- 18q3+ 17q2-5q) 

+ ~ ~ ~ ~ ( - 6 q ~ + l O q ~ - 3 q ) + t 3 3 ( - q ~ + q ~ - 2 q ~ + q ~ - q )  

+ S3221( -q5+ 5q4-9q3+9q2 -4q + 1) + s3Z13(3q4 -9q3 +9q2 -4q + 1) 

+ ~ ~ ~ 3 ( q ~ - 4 q ~ + 6 q ~ - 4 q + l ) + ~ 3 z 2 1 ~ ( 2 q ~ - 8 q ~ + 1 4 q ~ - 1 O q + 2 )  

+ ~ ~ ~ ~ 4 ( - 6 q ~ +  13qz-10q+2)+~316(5q2-6q+l)  

+ ~ ~ 4 ~ ( - 4 ~  +3q2 -4q +2)s2313(-q3+4q2-6q+3)+ ~ ,2~5(3q~-5q+3)  

+S217(-3q+2)+819. 
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The q-polynomial coefficients of the Schur functions sA are the non-zero q-dependent 
characters x i 4 2  of H , ( q ) .  Putting q = 1 yields 

s 9 - s g l  + s72 - s621 + S 6 I 3 +  s521’-2s5I4+ s432- s43I2-  s4221 + S 4 2 l 3 +  s41’ 

- 2s,3+ ~ 3 2 2 1 -  s3214+ ~ 2 2 1 5  - s 2 , 7 +  s19 

where the coefficients of the Schur functions sA are now the non-zero characters xt32 
of s9. 

There is no difficulty, in principle, in evaluating the characters for representative 
minimal words of any connectivity class ( p )  and hence constructing of character tables 
for the Hecke algebras H , ( q )  of type A,-1.  Typically we obtain for n = 3 

(I3) (21) (3)  
(3) 1 4 q2 

u31 
(211 ( ; -!y? 1”) 

where the rows are labelled by { A }  for each irreducible representation 7~~ and the 
columns are labelled by the connectivity classes ( p ) .  

The Littlewood-Richardson coefficients determine the restriction of characters of 
S,,,,, to products of characters of S,,, 0 S, ,  and they play precisely the same role in 
the Hecke algebra context. 

Theorem 2. Let p correspond to a minimal word of H,,,+,(q) with p = (UT), where U 
and T correspond to minimal words of the subalgebras isomorphic to H,,,(q) and 
H , ( q ) ,  generated by g1, g2,. . . , gm-1 and by g m t l ,  g m + 2 , .  . . , g m + n - l  respectively. Then 

X ; ( d  = c C;.”X:(q)XTY(q). (21) 
P.” 

The proof of theorem 2 follows from consideration of ( lo) ,  (11) and (19). 
There follow three useful corollaries to theorems 1 and 2. 

Corollary 1. If p = ur, where r signifies a one part partition, then 

a,b=O 
a + b + l = r  

where 

Corollary 2. If p = al, then 

Corollary 3. If p = n, then 
i f A = ( a + l , l b )  with a + b + l = n  
otherwise. 

We conclude by noting that theorem 2 can be generalized to prove that the 
Littlewood-Richardson rule applies to H , ( q )  just as it does to S, .  A detailed account 
of the result sketched in this letter, along with illustrative tables and a new construction 
of the irreducible representation matrices making use of q-analogues of Young 
operators and Garnir elements, will be published elsewhere. 
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